Long-toed salamanders (*Ambystoma macrodactylum*) exhibit a wide diversity of limb and digit malformations following exposure to injury and parasite infection. Despite numerous historical accounts of limb anomalies in salamanders, the causes and implications of such abnormalities have rarely been examined. By combining field studies and controlled experiments, results of this article suggest that conspecific attack and trematode infection may interact synergistically to determine the frequency and severity of limb abnormalities in salamanders.

Limbs exposed to both injury (a common result of attempted predation) and *Ribeirioia* infection exhibited 3–5 times more malformations than those exposed to either factor alone, including extra limbs, extra digits, skin webbings, and truncated bone structures. These findings emphasize that the effects of predators and parasites need not be antagonistic; instead, the two may interact positively to affect the levels of disease. The photographs on the facing page show a cleared and stained salamander from the parasite exposure experiment, illustrating the extent of bone malformations.

(Left) Photograph by P. T. J. Johnson. (Right) Photography, clearing, and staining credits: Stanley K. Sessions. Used by permission, all rights reserved.
The article with which these photographs are associated, by Pieter T. J. Johnson, Eric R. Preu, Daniel R. Sutherland, John M. Romansic, Barbara Han, and Andrew R. Blaustein, “Adding infection to injury: synergistic effects of predation and parasitism on amphibian malformations,” is tentatively scheduled to appear in Ecology 87(9), September 2006.