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Appendix B: Rarefaction and extrapolation for species richness (abundance data) 

This Appendix briefly reviews the abundance data sections of Colwell et al. (2012), and 

Chao and Jost (2012). 

 

Sample-size-based rarefaction/extrapolation  

Let )(mSind
 represent the expected number of species in a random sample of m individuals 

from the study assemblage, 1)1( indS . Under the multinomial model (Eq. 1 of the main text), if 

the true probabilities (



p1,p1,...,pS) 
of each of the S species in the assemblage were known, then 

we have (Good 1953): 
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The plot of )(mSind
 with respect to the sample size m is the expected species accumulation curve. 

Individual-based rarefaction estimates the expected species richness for a smaller sample of size 

m < n. Based on the reference sample with observed species abundances Xi, the traditional 

rarefaction formula is a minimum variance unbiased estimator for )(mSind
 (Hurlbert 1971, Smith 

and Grassle 1977): 
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Here, 0








b

a
 if a < b.  We use this conventional definition throughout this Appendix.  

As discussed in the main text, there are two kinds of variance associated with the estimator 

)(
~

mSind . A variance that is conditional on the reference sample measures only the variation in 

diversity that would arise from repeatedly resampling (without replacement) the given reference 

sample. This conditional variance approaches zero as m approaches n because the diversity of 

sample size of n is fixed (i.e., there is only one combination of all individuals or all sampling 

units). An unconditional variance measures the variation in diversity that would arise if another 

new sample of size m were taken from the entire assemblage (rather than from the original 

reference sample). Therefore, the unconditional variance does not approach 0 when sample size 

tends to n, and all associated confidence intervals are symmetric, which reflects the uncertainty 
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of the new sample. In deriving an unconditional variance, the number of undetected species must 

be estimated because those undetected species also affect the variation of a new sample. In most 

applications, unconditional variance is more useful because inferences are not restricted to the 

reference sample. 

Colwell et al. (2012) derived an analytic expression for an asymptotic unconditional 

standard error (s.e.) for )(
~

mSind  and then applied it to construct a 95% confidence interval by 

using )](
~

.[.96.1)(
~

mSesmS indind  . In order to accommodate more complicated rarefaction 

formulas for Hill numbers (see the main text) within a single unified framework, we suggest an 

alternative unconditional variance estimator based on a bootstrap method. Details are given in 

Appendix G. 

Abundance-based extrapolation estimates the expected number of species )( *mnSind   in an 

augmented sample of n + m
*
 individuals from the assemblage (m

*
 > 0). Previous analyses of 

abundance-based extrapolation include Good and Toulmin (1956), Melo et al. (2003), Shen et al. 

(2003), Chao and Shen (2004), Mao and Colwell (2005) and Mao (2007). The theoretical 

formula from Eq. (B.1) for an augmented sample of size n + m
* 
can be expressed as  
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Note that as m
*
 tends to infinity, )( *mnSind  tends to species richness. Based only on the 

reference sample, with observed species frequencies Xi and their frequency counts



f i, we slightly 

modify the approach of Shen et al. (2003) and consider the following more accurate predictor for 

the species richness in an augmented sample of size n + m
*
:  
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In this prediction formula, 0f̂  can be any proper predicted value of f0, the number of undetected 

species present in the assemblage, but not observed in the reference sample. Colwell et al. (2012) 

suggested using the Chao1 estimator (Chao 1984) or ACE (Chao and Lee 1992) for 0f̂ . The 

estimator from the Chao1 estimator is  
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To obtain an unconditional variance estimator for  )(
~ *mnSind   and an associated 

confidence interval, we again used a bootstrap method (Appendix G). As m
*
 tends to infinity, 

)(
~ *mnSind   approaches the Chao1 estimator, and the analytic variance (Colwell et al. 2012) of 

)(
~ *mnSind   approaches that for the Chao1 estimator. Empirical simulations have indicated that 

the unconditional variance obtained from the bootstrap method tends to be slightly smaller than 

the analytic variance.  

Colwell et al. (2012) connected the rarefaction part (which plots )(
~

mSind  with respect to m, 

where m < n, see Eq. (B.2)) with the extrapolation part (which plots )(
~ *mnSind   with respect to 

n + m
*
 for  m

*
 > 0; see Eq. (B.4));  the two parts of the curve as well as their corresponding 

confidence intervals join smoothly at the reference point (n, Sobs). 

 

Coverage-based rarefaction/extrapolation 

The concept of sample coverage (or simply coverage) was originally developed by the 

founder of modern computer science, Alan Turing, and I. J. Good (Good 1953, 2000). Coverage 

is a measure of sample completeness, and is defined as the total relative abundances of the 

observed species, or equivalently, the proportion of the total number of individuals in an 

assemblage that belong to species represented in the sample. For the reference sample of size n 

from a multinomial model given in Eq. 1 of the main text, sample coverage is defined as:  
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where I(A) is an indicator function that equals 1 when A is true and 0 otherwise.  

Contrary to most people’s intuition, sample coverage can be very accurately and efficiently 

estimated using only information contained in the sample itself, as long as the sample is 

reasonably large (Good 1953, Robbins 1968, Esty 1983, 1986). Given a reference sample of size 

n, the Good-Turing estimator of sample coverage is simply 1 − f1/n, where f1 is the number of 

singletons. Chao and Jost (2012) used a more accurate estimator: 
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Chao and Jost (2012) suggested that rarefaction and extrapolation be plotted with respect to 

sample coverage rather than with respect to abundance or number of sampling units. One of their 

main reasons is that the expected species richness for standardized sample coverage satisfies a 

replication principle (or doubling property), which the expected species richness for standardized 

sample size does not obey; see Chao and Jost (2012, their Appendix A) for a proof. They derived 

sample coverage estimates for rarefied and augmented samples to construct the coverage-based 

rarefaction/extrapolation curve. For any sample size m, let )(mCind  be the expected coverage for a 

sample of size of m individuals and we have (Good, 1953): 
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For the rarefaction part of the curve (m < n), Alroy (2010) and Jost (2010) suggested 

algorithmic approaches to estimate this interpolated coverage. Here we adopt the following 

analytic minimum variance unbiased estimator of the expected coverage )(mCind  derived by Chao 

and Jost (2012): 
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where Xi is the number of individuals of species i observed in the reference sample. For the 

extrapolation part of the curve (n + m
*
), they derived an estimator for sample coverage for an 

augmented sample of size n+m
*
: 
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As m
*
 tends to infinity, the extrapolated coverage estimator approaches unity, indicating a 

complete coverage. When m
*
 = 0, Eq. (B.10) reduces to Eq. (B.7), the sample coverage estimator 

for the reference sample.  

As with sample-size-based curves, the coverage-based interpolation (which plots )(
~

mSind  

with respect to )(ˆ mCind , m < n, see Eqs. (B.2) and (B.9)) and extrapolation (which plots 

)(
~ *mnSind   with respect to )(ˆ *mnCind   for m

*
 > 0; see Eqs. (B.4) and (B.10)) join smoothly at 

the reference point ( )(ˆ nCind , Sobs), see Eq. (B.7).  The confidence intervals of expected species 

richness based on the bootstrap method also join smoothly. 
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