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Appendix E: Extrapolation formulas for Hill numbers of q = 1 and q ≥ 2 based on 

abundance data 

 

 

Extrapolation for Hill numbers of order q =1 

We first derive an extrapolation formula for Shannon entropy. In order for this 

demonstration to be self-contained, we repeat some definitions described in the main text. Let H 

be the true (asymptotic) Shannon entropy in the assemblage, i.e., H represents an asymptotic 

extrapolated value when the sample size tending to infinity. That is,   
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Chao et al. (2013) recently derived the following estimator of H using statistical sampling theory:  
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where A = 2f2 / [(n –1)f1 + 2f2]. Let H(n) be the expected entropy for a reference sample of size n,  
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The extrapolation here is to predict the expected entropy for a sample size n+m
*
, )( *mnH   

and derive its estimator based on a reference sample. Since the entropy is a slow-varying 

function of sample size, it is reasonable to assume that it is linear in sample size as in the 

following expression:  
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for some w,  where  0 < w < 1 and can be estimated from data. From the bias property of the 

entropy estimator (Basharin 1959), we have the approximation formula:  
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Then we can solve for the parameter w and obtain  
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Therefore, the expected entropy with sample size n + m
*

 turns out to be:    
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To find an estimator for )( *mnH  , we substitute )(H  and H(n)  by )(ˆ H in Eq. (E.1) and 
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)/log()/()(ˆ  respectively. Then we obtain the following estimator for the 

expected entropy of size n+m
*
: 
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For estimating the extrapolated diversity with q = 1, we just take the exponential function of the 

extrapolated entropy. That is, the proposed extrapolated estimator is  

)](ˆexp[)(ˆ **1 mnHmnD  .   

 

Extrapolation for Hill numbers of a general integer order q ≥ 2 

From the main text (Table 1), the extrapolation aims to predict the expected diversity of an 

extrapolated size n+m
*
. That is, we want to estimate: 
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Let ),( jq be the Stirling number of the second kind defined by the coefficient in the expansion 
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   where )1)...(1()(  jxxxx j . Let Vi be a binomial random variable 

with parameter n+m
*
 and probability pi. Then, we can write 
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 The last equality follows from a factorial moment property for the binomial distribution with 

parameter n+m
*
 and probability pi, i.e., j
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)( *mnDq  as shown in Table 1 of the main text:  
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As m
*
 tends to infinity, we obtain the following nearly unbiased estimator for the asymptotic 

diversity )1/(1)()( qS
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for q ≥ 2:  
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This estimator can also obtained by noting that ]/[ )()(
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