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Appendix G: A bootstrap method to construct an unconditional variance estimator for any 
interpolated or extrapolated estimator 
 
 
Abundance data 
 

Under the multinomial model given in Eq. 1 of the main text, we suggest the use of a 
bootstrap method to approximate the variance of any interpolated or extrapolated diversity 
estimator developed in this paper. After a variance estimator is obtained, the variance can then be 
applied to construct a confidence interval of the expected diversity. Here we use the interpolated 
species richness estimator )(ˆ mDq  given in Table 1 of the main text as an example. Parallel steps 
can be formulated for any other estimators.  
 

In the bootstrap procedure, we first need to construct the “bootstrap assemblage” which 
mimics the true entire assemblage. We first determine the true species richness in this bootstrap 
assemblage.  As in the main text, define the abundance frequency count fk as the number of 
species each represented by exactly k individuals in the reference sample. Thus, f1 denotes the 
number of singletons and f2 denotes the number of doubletons in the sample. Let 0̂f  be any 
proper estimator of the number of undetected species. Using the Chao1 estimator (Chao 1984), 
we have  
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Since the number of species in the “bootstrap assemblage” must be an integer, we define *
0̂f  as 

the smallest integer which is greater than or equal to 0̂f .  Thus, there are *
0̂fSobs +  species in the 

bootstrap assemblage. Although the Chao1 estimator is theoretically a lower bound, simulations 
have suggested that it can be used to estimate the variance of any estimator. This is mainly 
because very rare species that are not counted in the lower bound have almost negligible effect 
on variance.  

 
Next we determine the true relative abundances for those species in the bootstrap 

assemblage. For the Sobs species that are observed in the reference sample, assume that the ith 
species is represented by Xi > 0 individuals. The sample relative abundance Xi /n on average 
overestimates the true relative abundance pi. This is seen from the following conditional 
expectation: 
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Thus, we need to tune or adjust the sample frequency Xi /n. Chao and Jost (2012) showed that a 
very accurate sample coverage estimator for the reference sample based on individual-based 
abundance data is  
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When f2 = 0, a modified formula is  
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Using the concept of sample coverage, Chao et al. (2013, in preparation) derive that the tuned 
relative abundance in the bootstrap assemblage for the ith species is:  
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For the remaining *
0̂f  species in the bootstrap assemblage (i.e., those species that were not 

detected in the sample but exist in the bootstrap assemblage), we assume they all have the same 
probability *

0̂/)](ˆ1[ fnCind− . This assumption may look to be restrictive, but the effect on the 
resulting variance estimator is small.   

 
After the bootstrap assemblage is determined, a random sample of m individuals is then 

generated with replacement. Then a bootstrap estimate )(ˆ mDq  is calculated for the generated 
sample, i.e., all statistics in our estimators are replaced by those computed from the generated 
data. Replicate the procedure B times and obtain B bootstrap estimates (B = 200 in our examples). 
Some preliminary simulations suggested that in our examples a replication size of 200 is 
sufficient to obtain stable variance estimates and confidence intervals. The bootstrap variance 
estimator of the estimator )(ˆ mDq  is the sample variance of these B estimates. The resulting  
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bootstrap s.e. of )(ˆ mDq  is then used to construct a 95% confidence interval )(ˆ mDq  

..96.1 es± [ )(ˆ mDq ] for the expected diversity of order q in a sample of size m. Similar 
procedures can be used to derive variance estimators for any other estimator and the associated 
confidence intervals.  
 
Incidence data 

Consider the independent Bernoulli model in Eq. 2a of the main text. We assume that each 
species may or may not be detected in each of T independent sampling units (quadrats, plots, 
traps, microbial culture plates, etc.). We assume in the reference sample that species i is detected 
in Yi samples, for i = 1, 2, …, S. Define the incidence frequency count Qk as the number of 
species that are detected in exactly Yi = k samples,  k = 0, 1, …, T. The independent Bernoulli 
model assumes that the incidence probability of species i in any sample is iπ . Thus Yi is a 

binominal random variable with parameters (T, iπ ), as shown in Eq. 2b of the main text. Here 
we describe the bootstrap assemblage for each sampling unit as all procedures are parallel to 
those for abundance data. Let 0Q̂  be any proper estimator of the number of undetected species. 
Using the Chao2 estimator (Chao 1987) for species richness, we have  

⎩
⎨
⎧

=−−
>−

=
0.,2/)1(]/)1[(

0),2/(]/)1[(ˆ
211

22
2

1
0 Qif QQTT

Q if QQTT
Q

 
As with the abundance data, we define *

0Q̂  as the smallest integer which is greater than or equal 

to 0Q̂ .  This assures that the number of species in the bootstrap assemblage, *
0Q̂Sobs + , is an 

integer. The species incidence probabilities for the Sobs observed species in this bootstrap 
assemblage are estimated by  
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Here   ∑ == S
i iYU 1  denotes the total number of incidences in the reference sample, )(ˆ TCsample  

denotes the sample coverage estimate for the reference sample (see Eq. (C.7)), 
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and  
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For the remaining *

0Q̂  species that are in the bootstrap assemblage but were not detected in 

the sample, we assume they all have the same incidence probabilities *
0

ˆ/)](ˆ1)[/( QTCTU sample− .  

Given the bootstrap assemblage, then a Bernoulli random variable Wij in the independent 
Bernoulli product model (Eq. 2a of the main text) can be generated, and thus an incidence data 
matrix is obtained. Other procedures follow those for the abundance data as described above.  
 

LITERATURE CITED 

Chao, A. 1984. Nonparametric estimation of the number of classes in a population. Scandinavian 
Journal of Statistics 11:265-270. 

Chao, A. 1987. Estimating the population size for capture-recapture data with unequal 
catchability. Biometrics 43:783-791. 

Chao, A., and L. Jost. 2012. Coverage-based rarefaction and extrapolation: standardizing 
samples by completeness rather than size. Ecology 93:2533-2547. 

 


