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Appendix H: Rarefaction and extrapolation of Hill numbers for incidence data  

 

All our derivations for the results in Table 2 of the main text for incidence data are 

generally parallel to those for abundance data, but some modifications are required. In this 

Appendix, we only sketch the necessary modifications. For incidence data, our model is based on 

the following binomial product model for the observed incidence-based species frequencies 

),...,,( 21 SYYY : (see Eq. 2b in the main text) 
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As defined in the main text, the Hill numbers 
q
Δ(t) for the model of incidence data are expressed 

as  
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These are the Hill numbers based on the relative incidences  

S

j ji 1
/  , i = 1, 2,…, S.   

For any sample of size t, define the incidence frequency count Qk(t) as the number of 

species detected in exactly k sampling units. For the reference sample of size T, we just use Qk 

for notational simplicity, i.e., Qk = Qk (T). The expected value of Qk(t) can be expressed as: 
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In particular,  
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10 )1()]([  is the expected number of undetected species in t samples. 
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 as the total number of incidences in 

the T samples. Here U is an observable variable in the reference sample. Define Ut as the 

expected total number of incidences for t sampling units, and we have: 
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Here, Ut is an unobservable parameter and must be estimated from the reference sample.  
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As discussed in the main text for abundance data, we define the expected diversity 
q
Δ(t) for 

t sampling units as the Hill numbers based on the expected incidence frequency counts which are 

formed by averaging out incidence counts for t sampling units. Suppose a random sample of t 

sampling units are taken from the entire assemblage, then we obtain a set of incidence frequency 

counts for this sample, {Qk (t); k = 1, …, t}. After an infinite number of such samples have been 

taken, the average of Qk (t) for each k =1, 2, …, t tends to E[Qk (t)] derived in Eq. (H.2). The 

frequency counts expected in t sampling units consists of the frequency counts {E[Qk (t)]; k = 

1, …, t} with the expected total incidences  


t

j jt tQjEU
1

)]([ . Note that, for a set of t sampling 

units, the relative incidences of species are simply 1/Ut (there are E[Q1(t)] such species), 2/Ut 

(there are E[Q2 (t)] such species), …, t/Ut (there are E[ Qt (t)] such species). Thus we can obtain 

the expected diversity 
q
Δ(t) for t sampling units (t can be any positive integer, not necessarily 

restricted to t < T) as 
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(H.4) 

Rarefaction refers to the case where t < T whereas extrapolation refers to the case t > T. 

Throughout the paper and appendices, the theoretical formulas for rarefaction and extrapolation 

of Hill numbers for the model of incidence data refer to Eq. (H.4). All theoretical formulas for q 

= 0, 1, and 2, and in general for order q > 2, are provided in Table 2 of the main text (the first 

column). For finding estimators in the rarefaction part, we just replace the parameter Ut in Eq. 

(H.4) by an estimator (see below) and the expected incidence counts )]([ tQE k

 

by their 

estimators given in the following proposition. 

Proposition H1: Under a binomial product model (Eq. 2b in the main text), the minimum 

variance unbiased estimator for the expected incidence frequency count )]([ tQE k  is  
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Here, 0



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

b

a
 if a < b.  We use this conventional definition throughout this Appendix. The proof 

is parallel to that in Proposition D1 of Appendix D and is thus omitted.  

  

Rarefaction/Extrapolation for Species Richness (q = 0) 
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A similar proof as in Proposition D2 (Appendix D) shows that the rarefaction estimator 

)(ˆ0 t  is identical to the traditional sample-based rarefaction function. That is,  
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Since our estimator )(ˆ tQk for the incidence frequency counts are valid only for t < T, they can be 

used only for rarefaction, but not for extrapolation. The extrapolation estimator for species 

richness for the expected number of species )( *0 tTD 

 

in a sample of size )0( , **  ttTt  is 

shown in Eq. (C.4) and also in Table 2 of the main text.  

 

Rarefaction/Extrapolation for Shannon diversity (q = 1) 

The theoretical formula of diversity of order q =1 for a rarefied sample of size t is  
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Here we need an estimator for 
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estimator of the total incidence probabilities,  
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 , is U/T . This implies from Eq. (H.3) that 

an unbiased estimate of Ut for any t is TtUUt /ˆ  . Replacing Ut by tÛ and E[Qk(t)] by )(ˆ tQk , 

given in Eq. (H.5), we obtain the rarefaction estimator:  
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For the extrapolation of Hill number of q = 1, there is no unbiased estimator )(ˆ tQk as t > T. 

we adopt an approach similar to the one used for abundance data. For incidence data, define 

H )( H  as the true entropy in the assemblage: 
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Also, define H(T) as the expected entropy for the reference sample of size T, i.e.,  
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Chao et al. (2013) recently obtained a nearly unbiased estimator for the entropy under the model 

of incidence data: 

T

U
H

U

T
H sample logˆˆ

0 

 

,  (H.7) 
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and A = 2Q2 / [(T – 1)Q1 + 2Q2] . Thus, an estimator of the Shannon diversity is )ˆexp(ˆ1

sampleH . 

After some expansions, we can obtain the following two approximation formulas: 
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As with the abundance data, we assume that there is a linear relationship in the theoretical 

entropy function:  
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To find an estimator for )( *tTH  , we substitute H )(  and H(T)  by sampleĤ  given in Eq. (H.7) 
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As the augmented sample size t
*
 tends to infinity, the extrapolated formula (H.8) tends to the 

entropy estimator sampleĤ  in Eq. (H.7). For estimating the extrapolated diversity of q = 1, we just 

take the exponential function of the extrapolated entropy,  

)](ˆexp[)(ˆ **1 tTHtT  .  (H.9) 

  

Rarefaction/Extrapolation for Simpson diversity (q = 2) 

For q = 2, the theoretical formula for any sample size t is 
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Replacing Ut by tÛ and E[Qk(t)] by )(ˆ tQk , we obtain our proposed rarefaction estimator: 
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Applying our general formula (H.10) to an augmented sample size of T + t
*
, we obtain the 

following expected diversity of order 2:  
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The denominator in the above formula can be simplified to 
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In the above formula, we substitute  
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As t
*
 tends to infinity, we obtain the following nearly unbiased estimator for the asymptotic 

diversity: 
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Rarefaction/Extrapolation for Hill number of order q> 2 

In the theoretical formula 
q
Δ(t) given in Eq. (H.4) of any order q, we can replace Ut by 

tÛ and E[Qk(t)] by )(ˆ tQk  to obtain our proposed rarefaction estimator: 
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For extrapolation, we let ),( jq be the Stirling number of the second kind defined by the 

coefficient in the expansion 
)(

1
),( jq

j

q xjqx  
  , where )1)...(1()(  jxxxx j denotes the 

falling factorial function. Also, let Vi be a binomial random variable with parameter T+t
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The last equality follows from a moment property of a binomial distribution with parameter T+t

*
 

and probability πi:
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nearly unbiased predictor for q > 2 as shown in Table 2 of the main text: 

.
)(

))(,(

)/(

1
)(ˆ

1

1

1
)(

)(

*

)(*
*

qq

j jY
j

j

i

q

j

q

q

i
T

Y

tT

tTjq

TU
tT



 












  


  

 

As t
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 tends to infinity, the nearly unbiased estimator for the asymptotic diversity 
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This estimator can also obtained by noting that ]/[ )()(
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A replication principle and its generalization for the model of incidence data 

Proposition H2: A replication principle for the model of incidence data. Assume Assemblage 2 

consists of K replicates of Assemblage 1. Each replicate has the same number of species and the 

same species incidence probabilities as Assemblage 1, but with completely different, unique 

species in each replicate. A sample of t sampling units is taken from Assemblage 1. Then number 

of sampling units needed in Assemblage 2 to attain the same expected sample coverage is 

approximately Kt, and the expected diversity of any order q ≥ 0 in Assemblage 2 for the sample 

with standardized coverage is approximately K times of that in Assemblage 1.  

Proposition H3: A generalization of the replication principle discussed in Proposition H2. If 

Assemblage 2 is unambiguously K times more diverse than Assemblage 1 (i.e., for all q ≥ 0, Hill 

number of order q of Assemblage 2 is K times that of Assemblage 1), then in the coverage-based 
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standardization, the expected diversity of any order q ≥ 0 in Assemblage 2 is approximately K 

times of that in Assemblage 1.  

The proof for these two propositions is generally parallel to that for abundance data (Propositions 

D4 and D5 in Appendix D) and thus is omitted. 
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