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Appendix I: Hill numbers and Hurlbert’s indices  

 

Hurlbert (1971) suggested a class of species indices {S(m); m =1, 2,….} as a family of 

useful measures. Here S(m) is defined as the expected number of species in a sample of m 

individuals selected at random (with replacement) from an assemblage with S species and the 

relative abundances {p1, p2,…, pS}. The plot of S(m) with respect to sample size m is the 

traditional expected species accumulation curve (SAC). Here the Hurlbert index S(m) is identical 

to the theoretical formulas Sind(m) given in Eq. (B.1) for abundance data. Given a reference 

sample, the sample-size-based rarefaction and extrapolation formulas (Colwell et al. 2012) for 

species richness provide estimators of Hurlbert indices. In this Appendix, we simply use the 

notation S(m) instead of Sind(m) for notational simplicity. That is, from Eq. (B.1), we have (Good 

1953) 
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For Hurlbert indices, we have S(1) = 1, and as m tends to infinity, S(m) tends to species 

richness. So species richness corresponds to the order infinity of Hurlbert’s indices. We now show 

that Hill numbers and Hurlbert indices are mathematically equivalent in the sense that they contain 

the same information about biodiversity.  

 

Since Hurlbert’s indices apply to integer numbers, we only consider Hill numbers for integer 

order q. Here, for the first time, we show that the set of measures {S(m); m = 2, 3….} and the set 

of Hill numbers restricted to non-negative integers, i.e., ,...}2,1,0;{ qDq , contain exactly the 

same information, in the sense that each element of one set is a function of the other set, i.e., if we 

know one set, then the other set is totally known.  We first prove the case of a finite order q in the 

following proposition.  

 

Proposition I1: The two sets of finite elements },...,,{ 32 DDD q

 and  )}(),...,3(),2({ qSSS  for a 

positive integer q contain the same information. 

 

Proof: We begin by showing for any finite q = 2, 3, …, that any S(q) can be expressed as the 

following function of Hill numbers  { DDD q,...,, 32 }. A direct expansion leads to (Leinster and 

Cobbold 2012)  
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This formula shows that if we know the values of DDD q,...,, 32 , then we know the values of 

)}(),...,3(),2({ qSSS . 

On the other hand, we show any Hill number of order 
q
D, for any fixed integer q = 2, 3, …, 

is a function of  )}(),...,3(),2({ qSSS . This can be seen by the following identity 
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This formula shows that if we know the values of )}(),...,3(),2({ qSSS , then we know the values 

of  DDD q,...,, 32 . Then, from Eqs. (I.2) and (I.3), we can conclude that the two finite sets 

},...,,{ 32 DDD q

 and )}(),...,3(),2({ qSSS  contain the same information.  

 

Proposition I2: The infinite sets {S(m); m = 2, 3….} for Hurlbert’s indices and the infinite set for 

Hill numbers ,...}2,1,0;{ qDq  contain the same information. 

Proof: From Proposition I1, we only need to notice that )(0  SD  = species richness S, and the 

expression 

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mmmSD  as proved by Mao (2007) using a complicated 

approach. Here we give a simple direct proof:  
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Our proof implies that, if we know the SAC, then Hill numbers for non-negative integer values are 

all known, and vice versa. Thus, we can conclude that the two important families of diversity 

measures, Hurlbert’s indices and Hill numbers (with non-negative integer order q), are 

mathematically equivalent.  

 

The slope at the sample size m =1 of an expected SAC and rarefaction curve as a function 

of sample size has been noted to characterize important quantities. Given the SAC formula in Eq. 

(I.1), Lande (2000) noted that this slope is  
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That is, this slope is identical to the Gini-Simpson index, which itself is a simple transformation 

of the Hill number for q=2. Given a reference sample of n, the traditional sample-size-based 

rarefaction below provides estimators of Hurlbert indices S(m) for m < n:  
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Olszewski’s (2004) found that the corresponding slope of this curve is  
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This is Hurlbert’s (1971) Probability of an Interspecific Encounter (PIE) for a sample; see 

Appendix J. For the coverage-based SAC, in which S(m) is depicted as a function of the C(m), we 

have similar findings. Notice that Eq. (B.8) gives the following formula of the expected coverage 

for a sample of size m for individual-based abundance data: 
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The following analytic minimum variance unbiased estimator of the expected coverage )(mC  is 

derived by Chao and Jost (2012): 
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where Xi is the number of individuals of species i observed in the reference sample. It then 

follows from Eq. (I.6) that the slope of the line connecting the origin (S(0), C(0)) and the point 

(S(1), C(1)) in a coverage-based SAC becomes  
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which is the Hill number for q = 2 (i.e., Simpson diversity). For the coverage-based rarefaction 

curve, Eq. (I.7) and the following derivation show that the estimated slope is a nearly unbiased 

estimator of the Simpson diversity:  
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Thus, the theoretical relationship in an expected SAC is also valid for data-based estimators.  

 

For a sample-size-based SAC, Olszewski (2004) also noticed that the slope at any sample 

size m−1, )1()(  mSmS , is the probability that the mth individual represents a species that was 

not found in the previous sample of size m−1. As proved by Chao and Jost (2012), this 

probability is identical to the expected coverage deficit: 

)1(1)1()(  mCmSmS ,  m > 0. 

We prove below that )1()(  mSmS  turns out to be a function of Hill numbers },...,,{ 32 DDD m . 

For example, the slope at the size m = 2 of the SAC is:  
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which a function of D2
 and D3

. Generally, we can extend Lande’s (2000) observation (Eq. I.4) 

to any sample size m in an expected SAC by showing that the slope of the expected SAC can be 

expressed as a function of Hill numbers at every point along the curve, as shown in the following 

proposition.  

 

Proposition I3: The slope at any size m ≥ 2 in an expected SAC, )1()(  mSmS , can be written 

as a function of Hill numbers }.,...,,{ 32 DDD m Specifically, we have  
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For m = 2, the above reduces to Eq. (I.4), and for m = 3, it reduces to Eq. (I.8).  

Proof: The result is seen from the following derivation:  
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For a coverage-based SAC, the slope at the coverage point C(m−1), i.e., the slope of the line 

connecting the two points (S(m−1), C(m−1)) and (S(m), C(m)) becomes 

 

)1()(

)1(1

)1()(

)1()(










mCmC

mC

mCmC

mSmS
. 

 

Then Proposition I3 implies that this slope is a function of Hill numbers },...,,{ 132 DDD m .  

 

LITERATURE CITED 

 

Chao, A., and L. Jost. 2012. Coverage-based rarefaction and extrapolation: standardizing 

samples by completeness rather than size. Ecology 93:2533-2547.  

Colwell, R. K., A. Chao, N. J. Gotelli, S. Y. Lin, C. X. Mao, R. L. Chazdon, and J. T. Longino. 

2012. Models and estimators linking individual-based and sample-based rarefaction, 

extrapolation, and comparison of assemblages. Journal of Plant Ecology 5:3-21. 



6 

 

Good, I. J. 1953. The population frequencies of species and the estimation of population 

parameters. Biometrika 40:237-264. 

Hurlbert, S. H. 1971. The nonconcept of species diversity: a critique and alternative parameters. 

Ecology 52:577-586. 

Lande, R., P. J. DeVries, and T. R. Walla. 2000. When species accumulation curves intersect: 

implications for ranking diversity using small samples. Oikos 89:601-605. 

Leinster, T., and C. A. Cobbold. 2012. Measuring diversity: the importance of species similarity. 

Ecology 93: 477-489. 

Mao, C. X. 2007. Estimating species accumulation curves and diversity indices. Statistica Sinica 

17:761-774. 

Olszewski, T. D. 2004. A unified mathematical framework for the measurement of richness and 

evenness within and among multiple communities. Oikos 104:377-387.

  


