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Commentary

c o n t R i b u t i o n s

Interpreting the Results from Multiple 
Regression and Stru�tural Equation 
Models

The coefficients that are associated with pathways 
in	 multiple	 regression,	 as	 well	 as	 more	 advanced	
methods	based	on	regression,	such	as	structural	equa-
tion	 models,	 are	 central	 to	 the	 interpretations	 made	
by researchers. The complex of factors that influence 
these coefficients make interpretations tricky and 
nonintuitive	at	times.	Very	often,	inappropriate	infer-
ences	 are	made	 for	 a	 variety	of	 reasons.	 In	 this	 pa-
per	we	discuss	several	important	issues	that	relate	to	
the interpretation of regression and path coefficients. 
We	begin	with	a	consideration	of	multiple	regression.	
Here we discuss the different types of coefficients 
that	 can	 be	 obtained	 and	 their	 interpretations,	 with	
our	focus	on	the	contrast	between	unstandardized	and	
standardized coefficients. Structural equation model-
ing	is	used	to	show	how	models	that	better	match	the	
theoretical	relations	among	variables	can	enhance	in-
terpretability	and	lead	to	quite	different	conclusions.	
Here	we	again	emphasize	often-ignored	aspects	of	the	
use of standardized coefficients. An alternative means 
of	standardization	based	on	the	“relevant	ranges”	of	
variables	 is	discussed	as	a	means	of	standardization	
that	can	enhance	interpretability.

Biologists	 have	 long	 used	 multiple	 regression	 in	
its various forms to examine relationships among 

explanatory and response variables. Over the past 
decade	 and	 a	 half,	 there	 has	 been	 a	 steady	 increase	
in	 the	use	of	path	analysis	by	biologists	 to	 serve	 the	
same purpose, but in the context of a more interpretive 
structure.	Most	recently,	there	has	developed	a	consid-
erable	amount	of	interest	 in	the	more	comprehensive	
capabilities of structural equation modeling (SEM) for 
understanding	natural	systems,	again	with	the	purpose	
of	enhancing	our	interpretation	of	results.	These	meth-
odologies	have	in	common	that	they	are	based	on	the	
fundamental	principles	of	regression	and	share	many	
of	the	same	issues	when	it	comes	to	interpretation.	

Researchers	may	not	be	aware	that	there	has	been	
a	long	history	of	discussion	among	quantitative	social	
scientists	 and	 statisticians	 about	 the	 interpretation	of	
results	from	both	multiple	regression	and	path	analy-
sis applications. The topic is sufficiently subtle and 
important that the central theme of Pedhazur’s (1997) 
book	 on	 regression	 is	 the	 pitfalls	 of	 interpreting	 re-
sults.	Among	the	many	things	he	concludes	is	that	re-
sults	are	frequently	misinterpreted,	particularly	as	they	
relate to the meaning of path coefficients. Many of 
these	same	issues	apply	to	SEM.	This	discussion	has	
involved	a	consideration	of	many	topics,	including	the	
types of coefficients that can be calculated, the kinds 
of	 interpretations	 that	 can	be	 supported	using	differ-
ent coefficient types, and the importance of theory to 
interpretation.	Here	we	illustrate	some	of	these	issues	
and	discuss	problems	with	the	use	of	standardized	co-
efficients, as well as a possible remedy.
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Unstandardized coefficients

Fig.	 1A	 presents	 the	 unstandardized	 path	 coef-
ficients associated with the regression of plant cover 
on elevation, stand age, and fire severity. While the 
unstandardized coefficients are the most primary pa-
rameters	 obtained	 from	 a	 multiple	 regression,	 often	
they	are	not	presented	by	 investigators.	 In	 fact,	 typi-
cally the significance tests associated with regression 
are	 tests	 of	 the	 unstandardized	 parameters,	 and	 the	
standardized	parameters	are	simply	derived	 from	 the	
unstandardized coefficients and not directly tested. 
Characteristic	of	unstandardized	parameters,	they	are	
expressed in the original units of the explanatory and 

An illustrative example

To	 illustrate	 the	 points	 being	 made	 in	 this	 paper	
we consider an example dealing with the response 
of shrublands to wildfire in Southern California (J. 
B.	Grace	and	J.	E.	Keeley,	unpublished manuscript).	
The	data	presented	here	represent	a	small	subset	of	the	
variables	in	the	complete	study.	In	addition,	the	rela-
tionships among variables have been modified some-
what	 to	 meet	 the	 needs	 of	 the	 current	 paper.	 In	 this	
example, 90 sites were located in areas burned by a 
series of fires that occurred during a 2-week period in 
the fall of 1993 (Keeley et al., in press).	Plots	were	es-
tablished in all 90 sites and sampling began in spring 
of the first postfire year and continued for 4 more 
years, though only the data from the first sampling fol-
lowing fire are discussed here. At each site, the vari-
ables included (1) herbaceous cover (as a percentage 
of ground surface), (2) fire severity (based on skeletal 
remains of shrubs, specifically the average diameter of 
the smallest twigs remaining), (3) prefire stand age (in 
years),	 estimated	 from	 ring	 counts	 of	 stem	 samples,	
and (4) the elevation above sea level of the site. The 
data	used	in	this	analysis	are	summarized	in	Table	1.	
Again,	the	data	presented	are	a	subset	of	the	original,	
and some relations in the data have been modified to 
make the example more applicable to our purposes.

Issues related to multiple regression

A	multiple	regression	represents	a	particular	mod-
el of relationships in which all potential explanatory 
variables (predictors) are treated as coequal and their 
interrelations	 are	 unanalyzed.	 As	 we	 shall	 see,	 the	
ability	to	obtain	interpretable	results	from	such	models	
depends	on	the	degree	to	which	their	structure	match-
es	the	true	relations	among	variables.	Fig.	1	presents	
diagrammatic	representations	of	a	multiple	regression	
model in which fire severity, stand age, and elevation 
are	 related	 to	 vegetation	 cover.	 Parameter	 estimates	
were obtained using the software Mplus (Muthén and 
Muthén 2005) under maximum likelihood estimation. 
Several types of coefficients were obtained from the 
analyses and are presented in Fig. 1, with each subfig-
ure	presenting	a	different	view	of	the	relations	among	
variables.	

Fig.	1.	Multiple	regression	results	based	on	analysis	
of the data in Table 1. (A) Unstandardized parameters. 
(B) Standardized parameters. (C) Semipartial co-
efficients for the directional pathways.
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dependent	 variables.	With	 reference	 to	 a	 simple	 lin-
ear regression, unstandardized coefficients associated 
with	directed	paths	represent	the	slope	of	the	relation-
ship.	The	same	is	true	in	multiple	regression,	although	
the	slope	is	in	n-dimensional	space.	

As	 we	 begin	 to	 interpret	 the	 results	 in	 Fig.	 1A,	
note that the undirected relationships (double-headed 
arrows) represent the covariances among exogenous 
variables (predictors) in a model. In contrast, the co-
efficients associated with directed paths are partial 
regression coefficients. It is important for the discus-
sion	that	follows	to	understand	when	the	principles	of	
partial	regression	apply.	Simply	put,	partial	regression	
represents	a	method	of	statistical	control	that	removes	
the effect of correlated influences. Pathways that in-
volve	partial	regression	can	be	recognized	by	the	fol-
lowing: (1) they involve a directed relationship (sin-
gle-headed arrow), (2) the response variable (variable 
receiving	 the	 arrow)	 also	 receives	other	 arrows,	 and	
(3) the multiple predictors affecting the response vari-
able	are	correlated.	As	we	can	see	from	these	criteria,	
all	directed	paths	 in	multiple	 regression	will	 involve	
partial regression as long as there are significant cor-
relations	among	predictors.	The	question	then	is	how	
are we to interpret such coefficients.

The literal definition of a partial regression coef-
ficient is the expected change in the dependent vari-
able associated with a unit change in a given predic-
tor while controlling for the correlated effects of other 
predictors.	There	 are	 actually	 several	 different	ways	
we can look at partial regression coefficients. The 
most	direct	is	to	view	them	as	parameters	of	an	equa-
tion	such	as

   cover = 0.038(elevation)
	 							 			+ 0.149(age) – 7.96(severity) (1)

when	variables	are	in	their	raw	units.	If	we	were	able	
to	plot	a	four-dimensional	graph	of	cover	against	el-
evation,	age,	and	severity,	the	unstandardized	regres-
sion coefficients would be the slopes of the relation-
ship	 in	 the	 plot.	 From	 this	 perspective,	 it	 should	 be	
clear that the coefficients estimate the mean influenc-

es	of	predictors	on	the	response	variable	and	the	varia-
tion	around	the	mean	is	ignored.	Deviations	from	the	
mean	in	this	case	relate	to	the	estimation	of	the	prob-
abilities that coefficients’ values are zero. Thus, one 
interpretation of the unstandardized coefficients is that 
they are prediction coefficients. They also are descrip-
tive coefficients in that they describe the association 
between	cover	and	a	one-unit	change	in	the	other	vari-
ables. Hypothetically, these coefficients might also be 
viewed as explanatory. However, for such an interpre-
tation	to	be	valid,	we	must	depend	on	the	structure	of	
the	model	to	match	the	true	dependencies	among	the	
predictors. As Pedhazur (1997:8) states, “Explanation 
implies, first and foremost, a theoretical formulation 
about	 the	nature	of	 the	relationships	among	the	vari-
ables	under	study.”	This	point	will	be	illustrated	later	
in	 the	paper	when	we	discuss	 the	structural	equation	
model	results	for	these	data.	

Referring back to our example, if we were to keep 
elevation	constant	for	a	set	of	plots,	and	the	stands	be-
ing burned were of a fixed age, a one-unit difference 
in the fire severity is associated with an average dif-
ference in cover of –7.96 cover units (i.e., the cover of 
the postfire community would differ by 7.96%). Simi-
larly, if we were able to apply a fire of fixed sever-
ity	while	also	holding	stand	age	constant,	a	difference	
in elevation of 1000 m is associated with an expected 
difference of 38% in the postfire cover.

Standardized coefficients

Looking at Fig. 1A, we see that it is difficult to 
compare unstandardized coefficients among different 
pathways	 because	 the	 raw	 units	 are	 various.	 Cover	
varies	in	percentage	points,	elevation	varies	in	meters,	
age varies in years, and fire severity varies in the units 
of an index based on the diameter of remaining twigs 
following fire. So, is a value of 0.038 (the coefficient 
for	elevation	effects	on	cover)	large	or	small	relative	
to	the	effect	of	another	factor?	The	standardization	of	
the coefficients based on the standard deviations of the 
variables	is	the	approach	typically	used	to	make	coef-
ficients comparable. In essence, this puts variables in 
standard deviation units, and in that sense the expected 
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impact	of	a	standard	deviation	difference	in	one	vari-
able (say elevation) can be compared to a standard de-
viation difference in another variable (say fire severi-
ty).	Though	a	convenient	transformation,	standardized	
regression coefficients are frequently misinterpreted, 
for reasons we will discuss next. 

The	 most	 common	 misinterpretation	 of	 standard-
ized coefficients is to interpret them as if they repre-
sent a partitioning of explained variance in the model. 
The fact that standardized coefficients are in standard 
deviation	 units	 contributes	 to	 the	 tendency	 to	 make	
this mistake. For example, the formula for standard-
ized partial regression coefficients can be expressed in 
terms	of	the	correlations	among	variables.	In	the	case	
of	two	predictors,	x1	and	x2,	and	one	response,	y1,	this	
formula	is

(2) 
where γ11	refers	to	the	standardized	partial	regression	
coefficient representing the response of y1	 to	 x1,	 and	
the	r	values	represent	the	bivariate	correlations	among	
variables. This formula can be readily extrapolated to 
the case of more than two predictor variables (Pedha-
zur 1997). 

Another	 relationship	 that	 applies	 to	 standardized	
coefficients is that the sum of all simple and com-
pound	associations	between	 two	variables	equals	 the	
bivariate	correlation	between	those	two	variables.	For	
example, the bivariate correlation between elevation 
and cover is 0.45 (Table 1). With reference to Fig. 1B 
where standardized coefficients are presented, we find 
that the coefficients are those that satisfy the formula 
(allowing cover to be y1,	and	elevation,	stand	age,	and	
severity	being	x1	–	x3)	

rx1y1	=	γ11 + rx1x2? γ12 + rx1x3? γ13,	 	 (3)

where	γ11	is	the	response	of	y1	to	x1,	γ12	is	the	response	
of	y1	to	x2,	γ13	is	the	response	of	y1	to	x3,	and	r’s	refer	
to	correlations.

A third property of standardized coefficients is that 
they can be related to the explained variance in our 

response	variable	using	the	equation

R2	=	rx1y1? γ11 + rx2y1? γ12 + rx3y1? γ12 (4)

Pedhazur (1997). For our example presented in Fig. 
1B, we find that the expression in Eq. 4 yields an R2	of	
0.326 (note the standardized error variance shown in 
Fig.	1B	equals	1	minus	the	R2).	

Now, the properties of standardized coefficients 
give	the	impression	that	they	solve	a	number	of	prob-
lems. Most obviously, they put all the coefficients in 
what	 seem	 to	 be	 the	 same	 units.	 However,	 they	 are	
only	 the	“same”	 if	we	are	willing	 to	say	 that	a	stan-
dard	deviation	for	one	variable	in	one	metric	is	inter-
pretationally equivalent	to	a	standard	deviation	of	an-
other	variable	that	was	measured	in	a	different	metric.	
This	 is	 an	 implicit	 assumption	of	using	 standardized	
coefficients and it is not obvious that this assumption 
is	suitable	other	than	in	the	fact	that	each	is	a	standard	
deviation.	

	 More	 seductive	 than	 that,	 however,	 is	 that	 stan-
dardized coefficients are expressed in terms of cor-
relations,	 which represent the variation associated 
with the relationships.	In	the	case	of	simple	regression	
(involving one predictor variable), we know that the 
unstandardized coefficient represents the slope, while 
the standardized coefficient represents the square root 
of the variance explained in the response variable. 
Eq. 4 may give the false impression that this relation-
ship between standardized coefficients and variance 
explained can be generalized to the case of multiple 
correlated	 predictors.	 However,	 it	 cannot	 be	 so	 gen-
eralized.	To	see	why	more	readily,	we	now	turn	to	the	
concept of semipartial coefficients and unique vari-
ance explanation.

Semipartial coefficients and the concept of 
shared variance explanation

The semipartial coefficient, when expressed in 
standardized	form,	represents	a	measure	of	the	unique 
ability of a predictor variable to explain variation in 
a response variable that cannot be explained by any 
other predictor variable in the model.	We	can	under-
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stand	 this	 in	 contrast	 to	 stepwise	 regression,	 which	
measures the sequential abilities of variables to explain 
residual variance. In sequential variance explanation, 
there is a pervading influence on the results by the log-
ic	 used	 to	 determine	 the	 order	 of	 variables	 included.	
Here,	the	semipartials	represent	a	measure	of	the	mini-
mum	effect	of	a	variable	regardless	of	logical	order.	In	
the example in Fig. 1C, the coefficients associated with 
directed paths are semipartial coefficients, while the 
coefficients associated with undirected paths remain 
correlations. The unique variance explanation abilities 
of our three predictors (elevation, age, and severity) are 
0.075, 0.002, and 0.096, the squares of the semipartial 
coefficients. Collectively, the three variables provide 
unique variance explanation of 0.173. Since the total 
variance explained by the full model is 0.326, we must 
conclude that 0.153 (roughly half) of the explained 
variance	is	shared	among	predictors.	

The	concept	of	shared variance explanation	makes	
sense	 when	 we	 have	 predictor	 variables	 that	 are	 cor-
related for some unknown or unspecified reason. How 
are we to apportion the correlated explanatory power 
among	predictors	 in	 a	multiple	 regression?	Since	our	
relations	 among	predictors	 are	unanalyzed	or	not	un-
derstood,	 we	 have	 no	 means	 to	 accomplish	 this.	The	
implications	of	these	relations	can	be	seen	if	we	com-
pare the coefficients in Figs. 1B and C. It is to be ex-
pected that the partial regression coefficients are great-
er than the semipartial coefficients, with the degree of 
difference	directly	related	to	the	strength	of	the	corre-
lations	 among	 predictors.	 It	 should	 be	 clear	 from	 the	
above	discussion	that	as	predictors	become	more	high-
ly correlated, their unique variance explanation ability 
decreases.	 It	 should	 also	 be	 clear	 from	 our	 presenta-
tion that the standardized partial regression coefficients 
(Fig. 1B) do NOT represent measures of variance ex-
planation	 ability.	 Rather,	 the standardized partial re-
gression coefficients represent expected changes in y 
as a result of manipulations in x in standard deviation 
units while controlling for the correlated effects of oth-
er predictors. The reason these coefficients cannot be 
used to represent variance explanation is simple; it is 
because	we	cannot	guess	how	to	apportion	the	variance	
explanation shared among predictors. In sum, the total 

variance explained in a multiple regression can only 
be	attributed	to	the	collection	of	predictors.	The	truth	
of	 this	 is	most	evident	 in	nonlinear	regression	where	
individual predictors (e.g., x and	x2) may explain no 
variance by themselves, yet together they can explain 
substantial	variance	in	some	y.	

Conclusions about the interpretability of mul-
tiple regression

While	 investigators	 commonly	 ask,	 “What	 is	 the	
relative	importance	of	a	set	of	causes	controlling	some	
observed	phenomenon?”	we	must	conclude	that	when	
predictor	 variables	 are	 correlated	 for	 unknown	 rea-
sons, standardized partial regression coefficients do 
not	provide	an	answer	to	this	question.	It	 is	 true	that	
when correlations are not excessive, path coefficients 
can	 provide	 important	 insights.	 Multiple	 regression,	
which	is	inherently	designed	to	ignore	the	causes	be-
hind	the	correlations	among	a	set	of	predictors,	makes	
for	 a	 particularly	 poor	 approach	 to	 understanding,	
however.	 This	 fundamental	 problem	 has	 been	 long	
recognized	 and	 is	 the	 central	 theme	 in	 Pedhazur’s	
(1997) book on multiple regression. While Pedhazur 
discusses	 the	 problem	 from	 many	 different	 angles,	
his	main	conclusion	is	that	without	a	theory	to	guide	
the	analysis,	 a	meaningful	 answer	 to	 the	question	of	
relative	 importance	 of	 factors	 is	 usually	 precluded	
in	 a	 multiple	 regression	 analysis.	As	 we	 have	 seen,	
standardized regression coefficients do not equate to 
variance explanation. At the same time, measures of 
unique and shared variance explanation, which can be 
obtained	 using	 semipartial	 analysis,	 really	 don’t	 ad-
dress explanatory questions either, but instead, relate 
more	to	their	unique	roles	as	predictor	variables.	

Structural equation modeling

Since	the	interpretability	of	multiple	regression	re-
sults is typically limited by an insufficiently developed 
theoretical	framework,	we	should	consider	what	prob-
lems	are	solved	using	a	theory-oriented	method	such	
as	SEM.	For	those	not	familiar	with	SEM,	it	involves	
the	use	of	a	generalized	multiequation	framework	that	
enables	the	analyst	to	represent	a	broad	range	of	mul-
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tivariate hypotheses about interdependencies (Bollen 
1989). Path analysis, which is now familiar to most 
ecologists,	 is	 best	 known	 in	 analyses	 that	 only	 con-
sider	 relations	 among	 observed	 variables.	 Modern	
SEM allows for the inclusion of unmeasured (latent) 
effects, as well as the specification of a wide range 
of	 model	 types.	 Importantly,	 SEM	 allows	 for	 evalu-
ations of model fit that serve to permit overall test-
ing	of	the	model	as	a	hypothesis.	While	SEM	is	most	
commonly based on maximum likelihood estimation, 
many	model	 types	 can	be	 solved	using	various	 least	
squares	 procedures.	 While	 we	 do	 not	 present	 latent	
variable examples in this paper, the issues discussed 
apply	equally	to	such	models.	

We	 should	 begin	 by	 stating	 that	 SEM	 does	 not	
solve	 all	 problems	 associated	 with	 interpreting	 mul-
tivariate relations. Both inadequate data and insuffi-
cient	theory	can	block	substantial	progress.	Addition-
ally,	while	SEM	permits	the	implications	of	a	causally	
structured theory to be expressed, the analysis itself 
does	not	contribute	 to	 the	establishment	of	causality.	
This	must	come	from	other	information.	Nonetheless,	
the	use	of	theory	to	guide	our	analysis	within	an	SEM	
framework	has	the	potential	to	remove	many	obstacles	
to interpretation. The example presented here is meant 
to	 illustrate	 that	 potential,	 but	 not	 to	 imply	 that	 the	
application	of	SEM	automatically	leads	to	a	superior	
analysis.	

Returning to the example of fire response by Cali-
fornia	 shrublands,	 we	 now	 ask,	 “What	 do	 we	 know	
of the relations among our explanatory variables?” 
In	this	case,	the	authors	of	the	original	study	felt	they	
knew	 some	 important	 things,	 but	we	were	unable	 to	
incorporate	 this	 information	 into	 the	multiple	regres-
sion	performed	in	the	previous	section.	First,	substan-
tial experience (Keeley 1991) indicates that postfire 
recovery	by	the	plant	community	may	be	affected	by	
fire severity because of impacts on seed survival. It is 
also	possible	that	impacts	to	soil	properties	could	con-
tribute as well (Davis et al. 1989). The point is that 
fire severity is reasonably modeled as having a direct 
impact on plant cover. Stand age can be expected to 
have an effect on fire severity because older stands 

tend to have more fuel. A simple thought experiment 
illustrates the point. If we were to vary stand age (say, 
allow	a	stand	to	get	older	and	accumulate	more	fuel),	
we might reasonably expect that it would burn hotter 
(though this would not be guaranteed). However, if we 
were to manipulate fire severity in a plot, that would 
certainly	not	affect	the	age	of	the	stand.	This	logic	and	
the experience upon which it is based encourages us 
to	 represent	 the	 relationship	 between	 stand	 age	 and	
fire severity as a directional one rather than a simple 
correlation.	By	a	similar	logic,	we	can	see	that	the	re-
lationship	between	elevation	and	stand	age	should	be	
represented	as	directional.	 If	 shrub	stands	 tend	 to	be	
younger	as	we	go	higher	in	elevation,	which	the	data	
indicate, (e.g., if there were a reduced incidence of fire 
suppression	at	higher	elevations),	then	picking	a	spot	
lower on the mountain will likely result in finding an 
older	stand.	On	the	other	hand,	if	we	were	to	allow	a	
stand of shrubs to get older, we would not find that 
there	 was	 an	 associated	 change	 in	 elevation.	Again,	
the use of thought experiments, which tap into our 
body	of	prior	knowledge,	suggest	directional	relation-
ships	among	variables.	

Some	 researchers	may	be	uncomfortable	with	 the	
logic	used	above	 to	 indicate	directional	 relationships	
in	causal	models.	This	subject	is	beyond	the	scope	of	
our	discussion	in	this	paper	and	we	refer	the	reader	to	
more in-depth treatments of the subject (e.g., Bollen 
1989, Pearl 2000, Shipley 2000). For now, we accept 
such	a	procedure	as	reasonable	and	illustrate	its	conse-
quences	in	Fig.	2.	The	path	model	represented	in	Fig.	
2	 illustrates	 the	 logic	 of	 the	 dependencies	 described	
above.	 In	 addition,	 it	 represents	 the	 possibility	 that	
there may be influences of elevation on cover that are 
unrelated to associated variations in stand age and fire 
severity. Because this model is not saturated (i.e., not 
all paths are specified), our model represents a testable 
hypothesis.	Inherent	in	SEM	practice	is	the	evaluation	
of fit between model expectations and observed rela-
tions	in	the	data.	Our	point	here	is	not	to	elaborate	on	
this	point,	but	only	to	note	this	feature	of	SEM	prac-
tice	and	then	continue	with	our	discussion	of	interpre-
tation. The patterns of covariances specified in Table 
1 in fact fit the model presented in Fig. 2 reasonably 
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well (chi-square = 2.535 with 2 df and P	=	0.278;	note	
that a nonsignificant P	value	indicates	the	absence	of	
significance deviations between data and model). This 
does	not,	of	course,	prove	that	the	model	is	the	correct	
one,	only	that	it	is	consistent	with	the	data.	

The first thing we should do when interpreting the 
results	in	Fig.	2	is	to	consider	which	of	our	paths	in-
volve	partial	regression	and	which	involve	simple	re-
gression.	Recall	that	response	variables	receiving	two	
or	more	directed	arrows	will	involve	partial	regression	
if	the	predictors	involved	are	correlated.	As	stand	age	
and fire severity only receive single directed arrows, 
their	 incoming	pathways	 represent	 simple	 regression	
relations.	We	 can	 see	 in	 fact	 that	 the	 correlations	 in	
Table 1 match the standardized path coefficients in 
Fig.	 2	 for	 these	 two	 pathways.	 Cover,	 on	 the	 other	
hand, has multiple influences and thus, the coefficients 
from elevation to cover and fire severity to cover are 
partial coefficients. What this means is that when we 
examine the relationship between elevation and stand 
age or between age and severity, there are no influ-
ences	from	other	variables	in	the	model	to	control	for.	
On	 the	other	hand,	 the	 relationship	between	 severity	
and	cover	is	controlled	for	the	covarying	effects	of	el-
evation	on	cover.	Similarly,	the	direct	path	from	eleva-
tion to cover represents the effect once the influence 
of	severity	is	removed.

Considering the unstandardized path coefficients in 
Fig.	2,	we	can	see	that	the	covariance	between	eleva-
tion and stand age can be understood as an expectation 
that	age	will	decline	on	average	by	2.2	years	with	an	
increase	of	100	m.	The	covariance	observed	between	
stand age and fire severity can be understood as an 
expectation that severity will increase by 0.085 units 
with	each	year	older	a	stand	gets.	Thus,	we	can	under-
stand the covariance between elevation and fire sever-
ity	as	the	product	of	these	two	described	relationships.	
Further,	there	is	no	indication	of	any	other	effect	of	el-
evation on fire severity except that mediated by stand 
age (because there is no direct path from elevation to 
severity	to	indicate	some	other	effect).	

The interpretation of unstandardized coefficients 
connecting	 severity	 and	 elevation	 to	 cover	 is	 some-
what	 different	 from	 those	 associated	 with	 a	 simple	
regression coefficient. We would draw the interpreta-
tion from Fig. 2 that increasing fire severity by one 
unit	while	holding	all	other	conditions	constant	would	
cause a decrease in cover of 7.32%. The effect of ele-
vation	on	cover	is	somewhat	more	interesting	because	
of	 the	presence	of	both	direct	and	indirect	effects	on	
cover	implied	by	the	model.	The	direct	path	from	el-
evation	to	cover	predicts	that	if	one	were	to	choose	a	
site	100	m	higher	than	the	mean	and	yet	have	an	aver-
age severity fire, postfire cover would be 3.7% higher 

Fig.	2.	Path	model	results	based	
on	analysis	of	data	in	Table	1.	For	
path coefficients, upper numbers 
are the unstandardized coefficients, 
while	lower	numbers	are	standardized	
path coefficients. Error variables are 
standardized	values.	Model	chi-square	
= 2.535 with 2 df, P =	0.278.
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than	 the	mean.	On	 the	other	hand,	 the	 total	effect	of	
elevation	on	cover	is	0.050,	which	indicates	that	if	one	
moved	upslope	100	m	and	allowed	stand	age	and	se-
verity to vary as it naturally would (i.e., we are not 
holding	them	constant),	there	would	be	a	net	increase	
in cover of 5.0%. For the total effect of varying eleva-
tion, part of the increase in cover (1.3%) would result 
from the fact that stands would be younger (on aver-
age), 100 m higher, and associated fires would be ex-
pected	to	be	less	severe.	

Consideration of standardized coefficients (Fig. 
2) provides for an understanding of relationships ex-
pressed in terms of standard deviations. Such coeffi-
cients are both more easily compared (assuming dif-
ferent	standard	deviations	can	be	thought	of	as	equiva-
lent)	and	somewhat	more	abstract.	In	these	units,	we	
see	 that	 if	 severity	 were	 increased	 by	 one	 standard	
deviation	 while	 elevation	 was	 held	 constant,	 cover	
would be expected to decrease by 0.386 standard de-
viations.	On	the	other	hand,	if	elevation	was	increased	

by	 one	 standard	 deviation,	 while	 holding	 severity	
constant, cover would increase by 0.301 standard de-
viations.	Based	on	an	estimated	total	effect	of	eleva-
tion on cover of 0.414, we can see that if elevation 
was	increased	one	standard	deviation	without	holding	
age	and	severity	constant,	 then	cover	would	increase	
0.414 standard deviations. Thus, in terms of standard-
ized	 units,	 the	 direct	 effect	 of	 elevation	 on	 cover	 is	
less (sign ignored) than the effect of severity (0.301 
vs. 0.386), though the total effect of elevation on cov-
er is greater (0.414). 

So,	how	does	all	 this	 relate	 to	 the	question	of	 the	
relative	 importance	 of	 different	 factors	 in	 affecting	
cover?	If	we	accept	standardization	in	 terms	of	stan-
dard	 deviations	 as	 a	 reasonable	 basis	 for	 comparing	
coefficients (which is questioned below), it can be 
seen that the total influence of elevation on cover is 
greater than that of fire severity, with the total effect of 
stand age (–0.251) being least. The question we must 
now	 address	 is	 what	 it	 means	 to	 say	 that	 a	 pathway	

Table	 1.	 Covariances	 and	 correlations†	 among	 four	 variables	 relating	 vegetation	 regrowth	 in	 response	 to	
wildfire and the standard deviations of each variable (n = 90).‡ Matrix diagonals are the variances for the four 
variables.
	
Variables Vegetation

cover (% cover) 
Fire	severity

(index values)
Prefire stand 

age (yr) Elevation (m)

Cover 1,006.2 –26.2 –139.4 3686.3
Severity –0.50 2.722 13.47 –170.4
Age –0.35 0.65 157.8 –1459.6
Elevation 0.45 –0.40 –0.45 66,693

Standard	
deviations 31.72 1.65 12.56 258.25

†Note that the variance/covariance matrix can be reconstituted from the correlations and standard deviations 
presented.	All	analyses	presented	are	based	on	the	analysis	of	covariances.

‡The correlations among variables have been modified from the original to make the example more useful for 
the purposes of this paper. However, the standard deviations are as found by Keeley and Grace (submitted), thus 
the	original	scales	for	variables	are	preserved.
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represents expected change in terms of standard de-
viation	units.

Criticisms of standardization

While	 the	 above	 discussion	 appears	 to	 provide	
a	 suitable	 resolution	of	 the	question	of	how	we	may	
evaluate the importance of explanatory variables, we 
were	 forced	 to	accept	 the	caveat	 that	standardization	
based	 on	 standard	 deviations	 was	 reasonable.	 Many	
metricians	actually	recommend	that	researchers	avoid	
using standardized coefficients and focus on the un-
standardized coefficients when seeking to draw con-
clusions from regression models (Darlington 1990, 
Luskin 1991). The reason for this is tied to the sub-
stantive meaning of unstandardized coefficients and 
the conditional nature of standardized coefficients. If 
we	presume	that	our	sample	is	fairly	representative	of	
some	larger	world,	our	unstandardized	estimates	rep-
resent the slopes of the relationships (i.e., the mean re-
sponses). When we use standardized coefficients, we 
interject	additional	variables	into	the	problem,	that	of	
the sample variances. As Pedhazur (1997:319) so elo-
quently put it, “The size of a [standardized coefficient] 
reflects not only the presumed effect of the variable 
with	which	it	is	associated	but	also	the	variances	and	
the covariances of the variables in the model (includ-
ing	 the	dependent	variable),	 as	well	as	 the	variances	
of	the	variables	not	in	the	model	and	subsumed	under	
the	error	 term.	 In	contrast,	 [the	unstandardized	coef-
ficient] remains fairly stable despite differences in the 
variances	and	the	covariances	of	the	variables	in	dif-
ferent	settings	or	populations.”	

These	 criticisms	 of	 standardization	 appear	 rather	
powerful.	 In	 many	 ecological	 studies,	 we	 know	 that	
our	samples	often	represent	a	tiny	fraction	of	the	total	
samples	possible.	Also,	restrictions	on	randomization,	
for example because of accessibility problems or oth-
er	 sampling	 limitations,	 mean	 that	 sampling	 is	 often	
neither	 purely	 random	 nor	 fully	 representative;	 thus,	
variances	can	easily	vary	from	sample	to	sample.	Ad-
ditionally,	 comparisons	 among	 populations	 based	 on	
standardized coefficients depend on the variances be-
ing	constant	across	populations,	which	may	frequently	
not be the case. Unstandardized coefficients are gener-

ally	much	more	 readily	estimated	with	accuracy	and	
less	 sensitive	 to	 differences	 in	 the	 variances	 of	 the	
variables	 across	 samples.	 Comparisons	 across	 popu-
lations (or between paths) in unstandardized coeffi-
cients	do	not	depend	on	equal	sample	variances,	and	
as	 a	 result,	 are	 more	 generalizable	 parameters	 than	
are	 those	 based	 on	 standardization.	Altogether,	 there	
are	assumptions	that	go	into	the	interpretation	of	stan-
dardized coefficients and these are typically ignored, 
representing unknown influences.

A possible resolution using an alternative 
standardization procedure

Despite	the	criticisms	of	standardization,	research-
ers generally would prefer a means of expressing coef-
ficients in a way that would permit direct comparisons 
across	paths.	The	debate	over	this	issue	goes	back	to	
Wright (1921), who originally developed path analysis 
using standardized variables. It was Tukey (1954) and 
Turner and Stevens (1959) who first criticized the in-
terpretability	of	standardized	values	in	regression	and	
path	models,	and	many	others	have	since	joined	in	that	
criticism. However, Wright (1960) argued in defense 
of standardized coefficients, saying that they provide 
an	alternative	method	of	interpretation	that	can	yield	a	
deeper	understanding	of	the	phenomena	studied.	Lat-
er, Hargens (1976) argued that when the theoretical 
basis	 for	 evaluating	 variables	 is	 based	 on	 their	 rela-
tive degrees of variation, standardized coefficients are 
appropriate	 bases	 for	 inference.	 Therefore,	 there	 are	
circumstances where standardized coefficients would 
be	desirable.	As	Pedhazur’s	recent	assessment	of	this	
problem	concludes,	“.	 .	 .	 the	ultimate	solution	lies	in	
the	 development	 of	 measures	 that	 have	 meaningful	
units so that the unstandardized coefficients . . . can be 
meaningfully	interpreted.”	

So,	how	might	we	standardize	using	measures	that	
have	meaningful	units?	We	must	start	by	considering	
what	it	means	to	say	that	if	x	is	varied	by	one	standard	
deviation,	y	will	 respond	by	some	fraction	of	a	stan-
dard	 deviation?	 For	 normally	 distributed	 variables,	
there	is	a	proportionality	between	the	standard	devia-
tion and the range such that six standard deviations 
are expected to include 99% of the range of values. 
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As discussed earlier, this may seem reasonable if (1) 
we	have	a	large	enough	sample	to	estimate	a	consis-
tent sample variance, (2) our variables are normally 
distributed, and (3) variances are equal across any 
samples	we	wish	 to	compare.	The	 reason	why	many	
metricians oppose standardized coefficients is because 
these	three	necessary	conditions	are	not	likely	to	hold	
generally.	 Of	 equal	 importance,	 rarely	 are	 these	 re-
quirements explicitly considered in research publica-
tions	and	so	we	usually	don’t	know	how	large	viola-
tions	of	these	requirements	might	be.

Fig. 3 presents frequency distributions for the four 
variables considered in our example. In the absence of 
further	sampling,	the	repeatability	of	our	sample	vari-
ance	 estimate	 is	 unknown.	 This	 contributes	 to	 some	
uncertainty about the interpretability of coefficients 
standardized	 by	 the	 standard	 deviations.	 As	 for	 ap-
proximating a normal distribution, three of the four 
variables	 are	 truncated	 on	 the	 lower	 end	 of	 values.	

Cover can never be <0%, elevation likewise has a low-
er limit of expression relevant to terrestrial communi-
ties	in	this	landscape,	and	stand	age	is	also	limited	to	
a	minimum	value	of	between	0	and	1	year.	None	of	
these	deviations	are	substantial	enough	to	cause	major	
problems with hypothesis tests (i.e., these variables 
are	 not	 wildly	 nonnormal);	 however,	 the	 deviations	
from	 idealized	 normality	 may	 very	 well	 impact	 the	
relationships	between	standard	deviations	and	ranges.	
The observed range for cover was from 5% to 153% 
(overlapping canopies allow cover to exceed 100%), 
while six times the standard deviation yields an esti-
mated range of 190%. The observed range for eleva-
tion was from 60 to 1225 m, while six times the stan-
dard	deviation	equals	1550	m.	Stand	age	ranged	from	
3 to 60 years old, with six times the standard deviation 
equaling 75 years. Finally, fire severity index values 
ranged from 1.2 to 8.2 mm, while six times the stan-
dard deviation equals 9.9 mm. Thus, observed ranges 
are	 consistently	 less	 than	 would	 be	 estimated	 based	

Fig. 3. Frequency diagrams for cover, stand age, fire severity, and elevation. 
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on	standard	deviations	and	the	degree	to	which	this	is	
the case is slightly inconsistent (ratios of observed to 
predicted	ranges	for	cover,	elevation,	age,	and	severity	
equal 0.78, 0.75, 0.76, and 0.71).

It	is	possible	that	in	some	cases	information	about	
the	 ranges	 of	 values	 likely	 to	 be	 encountered	 or	 of	
conceptual	interest	can	provide	a	more	meaningful	ba-
sis for standardizing coefficients than can the sample 
standard	 deviations.	We	 refer	 to	 such	 a	 range	 as	 the	
“relevant range.” For example, if we have a variable 
whose	 values	 are	 constrained	 to	 fall	 between	 0	 and	
100,	 it	 would	 not	 seem	 reasonable	 for	 the	 relevant	
range chosen by the researcher to exceed this value 
regardless of what six times the standard deviation 
equals.	On	the	other	hand,	it	may	be	that	the	researcher	
has	no	basis	other	than	the	observed	data	for	selecting	
a	relevant	range.	Even	in	such	a	case,	we	can	choose	
to	 standardize	 samples	 that	 we	 wish	 to	 compare	 by	
some	common	range	so	as	 to	clarify	meaning	across	
those	samples.	Whatever	the	basis	for	standardization,	
researchers	should	report	both	the	unstandardized	co-
efficients and the metrics used for standardization.

For the variables in our example, we specify the 
relevant range for cover to be from 0% to 270%. Ob-
viously values cannot fall below 0%, but why chose 
an upper limit of 270%? Examination of cover values 
for all plots across the five years of the study show 
that values this high were observed in years 2 and 4 

of the study. By using a relevant range of from 0% to 
270%, we permit comparisons across years standard-
ized	on	a	common	basis.	Of	course,	this	implies	that	
the slopes measured will extrapolate to that full range, 
which	is	an	assumption	that	should	be	evaluated	close-
ly.	For	elevation,	the	relevant	range	we	choose	is	the	
observed range, from 60 to 1225 m. This span of 1165 
m is chosen because we do not wish to extrapolate to 
lower	 or	 higher	 elevations,	 in	 case	 relationships	 to	
other	variables	are	not	robust	at	those	elevations.	For	
stand age, we specify the relevant range to be 60 years 
for basically the same reason. Finally, the fire index 
range	chosen	was	also	the	observed	range,	which	was	
7.0	mm.	It	 is	clear	 that	values	could	be	obtained	be-
yond this range in another fire. It is not known, how-
ever,	whether	the	relationship	between	remaining	twig	
diameter	 and	 herbaceous	 cover	 would	 remain	 linear	
outside	the	observed	range.

Based	 on	 these	 determinations,	 we	 can	 generate	
path coefficients standardized on the relevant ranges. 
These coefficients are shown in Fig. 4. The biggest 
numeric	 differences	 between	 these	 values	 and	 those	
standardized using standard deviations (Fig. 2) is that 
the absolute values of the coefficients leading to cover 
are	lower	because	of	the	large	relevant	range	for	this	
variable. The coefficient for the effect of age on sever-
ity	is	slightly	higher,	while	that	for	the	effect	of	eleva-
tion on age is unchanged. Using these coefficients now 
allows	us	to	describe	the	importance	of	variables	us-

Fig. 4. Path analysis result showing 
coefficients standardized by the relevant 
ranges.
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ing their relevant ranges as the explicit context. These 
interpretations	are	only	valid	for	relative	comparisons	
within	the	n-dimensional parameter space defined by 
the relevant ranges. As fire severity increases across 
its relevant range, cover would be expected to decline 
by 19% of its relevant range. As elevation increases 
across	 its	 relevant	 range,	 the	 total	 change	 in	 cover	
from	both	direct	and	indirect	causes	would	be	an	in-
crease of 21.9% (the total effect). We now conclude 
from this analysis that the sensitivities of cover to fire 
severity and elevation (19% vs. 21.9%) are roughly 
equivalent	in	this	study,	though	of	opposing	sign.	It	is	
possible	 to	 test	whether	 these	 two	estimates	are	 reli-
able	differences,	which	in	this	case,	they	are	not.

Conclusions

It	is	important	to	recognize	that	the	analysis	of	data	
has	both	an	analytical	element	and	a	research	element.	
By	 analytical	 element,	 we	 refer	 to	 the	 purely	 math-
ematical	 and	 statistical	 properties	 of	 the	 analytical	
methods. By research element, we refer to the fine art 
of	applying	analysis	methods	in	the	most	meaningful	
ways.	 Formal	 training	 in	 statistics	 often	 emphasizes	
the	analytical	element	and	provides	 limited	prescrip-
tions	 for	 research	 applications	 that	 do	 not	 include	 a	
great deal of subjective judgment. What experienced 
statisticians	 have	 long	 known,	 however,	 is	 that	 for	
the	application	of	statistical	methods	to	be	successful,	
strong	 guidance	 from	 the	 research	 perspective	 is	 re-
quired.	Structural	equation	modeling	is	powerful	spe-
cifically because it allows researchers to incorporate 
their	 accumulated	 knowledge	 into	 the	 analysis.	 Our	
advice regarding the interpretation of path coefficients 
is	in	that	same	vein.	Rather	than	automatically	allow	
sample	standard	deviations	to	represent	the	authorita-
tive basis for standardizing coefficients, it is possible 
to	 insert	 our	knowledge	of	 the	 subject	 into	 the	 stan-
dardization process by explicitly considering the rele-
vant	ranges	over	which	variables	are	to	be	considered.	
This	procedure	of	standardizing	based	on	substantive	
considerations	 acts	 to	 facilitate	 comparisons	 while	
avoiding problems associated with the sample-specific 
nature	of	standard	deviations.	

As	with	many	new	approaches,	 initial	gains	 from	
defining and using the relevant range for standard-
ization	 may	 be	 modest.	 Often	 the	 sample	 range	 will	
provide	 the	 best	 estimate	 available.	 However,	 as	 we	
accumulate	 additional	 information	 and	 focus	 on	 the	
ranges	 that	are	 relevant	 to	 the	 inferences	we	wish	 to	
draw,	 much	 can	 be	 gained.	 Again,	 we	 recommend	
that unstandardized coefficients always be presented, 
regardless of the use of standardized coefficients of 
any	sort.	By	also	including	either	the	sample	standard	
deviations	 or	 the	 relevant	 ranges,	 which	 provide	 the	
bases	 for	 standardization,	 researchers	 can	 begin	 to	
compare	both	standardized	and	unstandardized	values	
across	 studies.	At	present,	 there	 is	 a	widespread	and	
careless misapplication of standardized coefficients by 
researchers,	both	in	the	use	of	multiple	regression	and	
in	the	use	of	SEM/path	analysis.	Alternative	means	of	
comparing standardized coefficients may prove useful 
in	drawing	meaningful	conclusions	from	analyses.	

James	B.	Grace
US	Geological	Survey

and
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University	of	North	Carolina
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